## Chapter 8: Chemical Bonding

Sec. 1: Chemical Bonds, Lewis Symbols, \& The Octet Rule

- Chemical bond - between atoms or ions that are strongly attached to one another
- Bonds formed by outermost electrons of the atoms, valence electrons, interacting
- Metallic bond - bind atoms in metals (i.e. copper, iron, aluminum)
- Octet rule - atoms tend to gain, lose, or share electrons until they are surrounded by eight valence electrons

- Ionic bond - electrostatic forces that exst between ions of opposite charge, formed by transfer of one or more electrons from one atom to another, form three-dimensional lattice made of charged particles
- Stability of ions $\mathrm{b} / \mathrm{c}$ strong electrostatic attractions between one ion and surrounding oppositely charged ions
- Lattice energy - energy required to completely separate an ionic lattice into its gaseous ions; a measure of the magnitude of interactions between ions, increases w/increasing charge of ions \& decreasing radaii
- Potential energy of 2 interacting charged particles: $E=k\left(Q_{1} Q_{2}\right) / d ; Q_{1} \& Q_{2}$ are charges on particles, $d$ is distance between centers, k is $8.99 \times 10^{9} \mathrm{~J}-\mathrm{m} / \mathrm{C}^{2}$
- Elements, besides transition metals, usually gain/lose electrons so as to achieve noble-gas configuration (most commonly metals form cations, nonmetals form anions); transition metals lose outermost s electrons before d
- Electron configuration of ions = that of the neutral atoms plus or minus number of electrons lost/gained

$$
\circ \quad \mathrm{Na}^{+} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}=[\mathrm{Ne}]
$$

Sec. 3: Sizes of Ions


- Cations smaller, anions larger than neutral atoms; generally the size of ions of the same charge increases going down the column of periodic table
- Isoelectronic series (of ions) - ions which possess same number of electrons (i.e. $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$, $\mathrm{Al}^{3+}$ ); size decreases as nuclear charge increases b/c electrons more attracted to nucleus Sec. 4: Covalent Bonding
- Covalent bond - sharing of elections between two atoms, usually both nonmetallic
- Single bond - sharing of one pair of electrons constitutes a single covalent bond;
- Multiple bonding: double bond -2 pairs; triple bond -3 pairs, etc.
- Lewis symbol - chemical symbol for element plus dot for each valence electron

- Lewis structures - representative diagram with shared electrons shown as a line, unshared shown as dots, to show how valence electrons form bonds and remaining unshared electrons
Sec. 5: Bond Polarity \& Electronegativity
- Bond polarity - measure of how equally electrons shared between 2 atoms in chemical bond
- Non-polar covalent bond - electrons shared equally between two atoms
- Polar covalent bond - one of the atoms exerts a greater attraction for bonding electrons
- Electronegativity - measure of ability of an atom in a molecule to attract electrons to itself; ranges from 0.7 to 4.0 ; used to determine polarity by finding difference in electronegativity (the greater difference means the more polar the bond)
- Increases left to right, decreases going down
- Fluorine is most electronegative so greatest ability to attract electrons
- Polar molecule - molecule whose centers of positive and negative charge don't coincide
- Dipole - two electrical charges of equal magnitude but opposite sign are separated by a distance
- Dipole moment - quantitative measure of magnitude of dipole; increases w/increasing amount of charge separated and increasing distance between charges


Sec. 6: Drawing Lewis Structures

- Formal charge - charge that an atom in a molecule would have if all atoms had same electronegativity
- To calculate: number of valence electrons minus electrons assigned in Lewis structure (atoms are assigned all unshared electrons, $1 / 2$ bonded electrons)
- Steps to draw Lewis structure: 1. Sum valence electrons from all atoms 2. Write symbols for atoms to show which atoms connected to which and show attachment w/single bond ( - ) 3. Complete octets of atoms bonded to central atom 4. Place leftover electrons on central atom 5. If not enough electrons for central atom to have full octet, use multiple bonds
- EX: Lewis Structure for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ : Valence electrons: $4+2(1)+2(7)=20$; Carbon surrounded by 2 hydrogens and 2 chlorines; 4 bonds $=8$ electrons; 20- $8=12$ unshared electrons
Sec. 7: Resonance Structures
- Used when single Lewis structure does not accurately represent molecule/ion b/c it is envisioned as a blend of multiple structures
- Resonance structures - equivalent Lewis structures except for placement of electrons
- EX: Draw resonance structures for $\mathrm{NO}_{2}{ }^{-}$

 Valence electrons: $5+2(6)+1=17$ 2 single bonds leaves too many unshared electrons; 2 double bonds leaves to few so 1 single and 1 double Each has complete octet



Sec. 8: Exceptions to the Octet Rule

- Molecules w/odd number of electrons where complete pairing is. . impossible (i.e. $\mathrm{NO}_{2}$ )
- Molecules w/less than octet (usually boron or beryllium) (i.e. $\mathrm{BF}_{3}$ )
- Molecules w/more than octet (i.e. $\mathrm{PCl}_{5}$ )
- Consider the formal charge when choosing which
 structure is most likely and should be used to represent the molecule
- EX: Draw the Lewis Structure for $\mathrm{ClO}_{2}$

Valence electrons 7+2(6)=19
Cl surrounded by 2 O atoms: $\mathrm{w} / 2$ single bonds formal charge $=-1$ for $\mathrm{O},+2$ for $\mathrm{Cl} ; \mathrm{w} / 2$ double bonds f.c. $=0$ for $\mathrm{O}, 0$ for Cl so double bonds is best structure

## Sec. 9: Strengths of Covalent Bonds



- Bond enthalpy - strength of covalent bond measure by molar enthalpy change, $\Delta \mathrm{H}$, for breaking of particular bond in a mole of gaseous substance; used to estimate enthalpy change during chemical reactions where bonds are broken and new ones formed
- Enthalpy of reaction: $\Delta \mathrm{H}=\Sigma$ (bond enthalpies of bonds broken) $-\Sigma$ (bond enthalpies of bonds formed); if $\Delta \mathrm{H}>0$ endothermic, if $\Delta \mathrm{H}<0$ exothermic
- Strengths increase w/ number of electron pairs shared between 2 atoms
- Bond length - distance between nuclei of bonded atoms; decreases as number of bonds between atoms increases
- EX: Estimate $\Delta \mathrm{H}$ for $\mathrm{H}-\mathrm{N}-\mathrm{N}-\mathrm{H}(\mathrm{g}) \rightarrow \mathrm{N} \equiv \mathrm{N}(\mathrm{g})+2 \mathrm{H}-\mathrm{H}(\mathrm{g})$

| \| |
| :--- |
| H |
| $H$ |

Must break $4 \mathrm{H}-\mathrm{N}$ bonds and $1 \mathrm{~N}-\mathrm{N}$ bond; Must form $1 \mathrm{~N} \equiv \mathrm{~N}$ bond and $2 \mathrm{H}-\mathrm{H}$
$\Delta \mathrm{H}=4 \mathrm{D}(\mathrm{H}-\mathrm{N})+\mathrm{D}(\mathrm{N}-\mathrm{N})-\mathrm{D}(\mathrm{N} \equiv \mathrm{N})-2 \mathrm{D}(\mathrm{H}-\mathrm{H})$
$=4(391 \mathrm{~kJ})+(163 \mathrm{~kJ})-(941 \mathrm{~kJ})-2(436 \mathrm{~kJ})=1727 \mathrm{~kJ}-1813 \mathrm{~kJ}$
$=-86 \mathrm{~kJ}$

