Vocabulary

- Wavelength—the distance from one trough or peak to the next
- Frequency—the number of complete cycles in 1s
- Photon—energy particle which behaves like light
- Heisenburg Uncertainty Principle—it is impossible to know both the speed and location of an electron at the same time
- Effective Nuclear Charge— Z_{eff} ; the number of protons average number of electrons
- Shelding/ Screening-inner shell electrons shield valence electrons from protons' effects
- Pauli Exclusion Principle—each electron from an atom has a unique set of quantum numbers
- Degenerate Orbitals—orbitals with the same energy
- Hund's Rule—lowest energy is attained when the number of electrons with the same spin quantum number is maximum

Waves

Equations

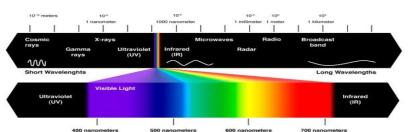
- $c = \lambda v$
- E=hv
- $\lambda = \frac{h}{mv}$ (v here is velocity)

Constants

h = 6.626×10^{-34} J·s (Planck's constant) c = 3.00×10^8 m/s (Speed of light)

Sample Problems

1. What is the wavelength of a wave with a frequency of 4.0 mHz? $4.0 \text{ kHz} \times \frac{1000 \text{ Hz}}{1 \text{ kHz}} = 4.0 \times 10^3 \text{ Hz}$


$$\frac{3.00 \times 10^8 \text{ m/s}}{4.0 \times 10^3 \text{ Hz}} = \lambda = 7.5 \times 10^4 \text{ m}$$

- 2. How much energy does the wave have? $E = (6.626 \times 10^{-34} \text{ J} \cdot \text{s})(4.0 \times 10^{3} \text{ Hz})$ $E = 2.7 \times 10^{-30} \text{ J}$
- 3. What is the velocity of an electron in that wave? (mass = 9.11×10^{-31} kg) $v = \frac{h}{m\lambda} = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(9.11 \times 10^{-31} \text{ kg}) (7.5 \times 10^4 \text{ m})} = 9.7 \times 10^{-9} \text{ m/s}$ Schrö

Quantum Numbers

Equations/ Definitions

• $v = 3.29 \times 10^{15} \text{ Hz} \left(\frac{1}{2^2} - \frac{1}{n^2}\right)$, where n = 3, 4, 5, 6

Scientists

Bohr-used Rutherford's nuclear model and Pascal's quanta to postulate that electrons have fixed orbitals attached to specific quanta of energy.

De Broglie-came up with the idea that an electron can have a wavelength (and thus have wave properties).

Heisenberg-concluded that the wave nature of electrons made it impossible to know both position and velocity at once

Schrödinger-created wave functions to generate electron probability density (a vague idea of where an electron will be at any given instant)

- $E_n = (-R_H) \frac{1}{n^2} = (-2.18 \times 10^{-18} \text{ J}) \frac{1}{n^2}$, where E_n is the energy of a particular orbital, and n is any principle quantum number (1 to ∞)
- $\mathbf{v} = (\frac{R_H}{h})(\frac{l}{n_i^2} \frac{l}{n_f^2}) = (2.18 \times 10^{-18} \text{ J})(\frac{l}{n_i^2} \frac{l}{n_f^2})$, where n is any principle quantum number from 1 to

infinity, and l is the azimuthal quantum number (n-1, for all n 1 to ∞)

Electronic Structure of Atoms

- n = principal quantum number (integers 1+)
- l = azimuthal quantum number (n-1)
- m_l = magnetic quantum number (integers -l to +l, inclusive)
- m_s = electron spin quantum number (-1/2 or +1/2)

Quantum Numbers Key Data

n	l	m_l	Subshell	Orbitals in Subshell	Total Orbitals in Shell
1	0	0	1s	1	1
2	0	0	2s	1	4
	1	-1, 0, 1	2p	3	
3	0	0	3s	1	9
	1	-1, 0, 1	3р	3	
	2	-2, -1, 0, 1, 2	3d	5	
4	0	0	42	1	16
	1	-1, 0, 1	4p	3	
	2	-2, -1, 0, 1, 2	4d	5	
	3	-3, -2, -1, 0, 1, 2, 3	4f	7	

Electron Configuration

Rules:

• Obey Hund's Rule!!

Examples:

• Full EC

• N—

- \circ Li⁺-1s²
- $\begin{array}{c} \circ & \text{El} & -13 \\ \circ & \text{Cu} & -1s^2 2s^2 2p^3 3s^2 3p^3 4s 3d^{10} \text{ (This is an EXCEPTION because } 4s 3d^{10} \text{ EC is more stable than } 4s^2 3d^{10} \text{)} \end{array}$
- Noble-Gas Abbreviation
 - \circ W—[Xe] 6s²4f¹⁴5d⁴
 - \circ Cr—[Ar] 4s3d⁵ (This is an EXCEPTION because 4s3d⁵ EC is more stable than 4s²3d⁴)

Orbital Diagrams:

1s	2s	2p		
$\leftarrow \rightarrow $	$\leftarrow \rightarrow$	1	\uparrow	\checkmark