Joule (J): a unit for energy
> In chemistry, we use kilojoules (kJ)
calorie (cal): measurement of energy change accompanying chemical reactions
> $1 \mathrm{cal}=4.184 \mathrm{~J}$
System vs Surroundings
> SYSTEM is what we're studying. Usually the chemicals in a chemical reaction
> SURROUNDINGS are everything else. Usually the container in which the reaction is occurring

- Closed system: usually what we study; can exchange enerav. but not matter. with its surroundings
First Law of Thermodynamics: Energy is conserved
$>\Delta E=E_{\text {final }}-E_{\text {initial }}$
$0+\Delta E \rightarrow E_{\text {final }}>\mathrm{E}_{\text {initial }} \rightarrow$ System gained energy
- $-\Delta E \rightarrow \mathrm{E}_{\text {final }}<\mathrm{E}_{\text {initial }} \rightarrow$ System lost energy
> (delta) $\mathrm{E}=\mathrm{q}+\mathrm{w}$
- q is heat, w is work

TABLE 5.1 - Sign Conventions for q, w, and ΔE

Enthalpy: heat absorbed or released under constant pressure
> Enthalpy is a state function
$\Rightarrow \Delta H=\Delta H_{\text {final }}-\Delta H_{\text {initial }}=q_{p}$ (heat at constant pressure)

- $+\Delta \mathrm{H}=$ endothermic reaction
- $-\Delta H=$ exothermic reaction

Enthalpy of reaction (or heat of reaction)
$\Rightarrow \Delta \mathrm{H}_{\mathrm{rxn}}=\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}$
> Enthalpy is an extensive property: the magnitude of $\Delta \mathrm{H}$ is directly proportional to the amount of reactant and product consumed in the process
> If you reverse the direction of the reaction, $\boldsymbol{\Delta} H$ is the same magnitude, but w/ reversed sign

- Ex: $\mathrm{CH} 4+2 \mathrm{O} 2 \rightarrow \mathrm{CO} 2+\mathrm{H} 20 \quad \Delta \mathrm{H}=-890 \mathrm{~kJ}$
$\mathrm{CO} 2+2 \mathrm{H} 2 \mathrm{O} \rightarrow 2 \mathrm{O} 2=\mathrm{CH} 4 \Delta \mathrm{H}=890 \mathrm{~kJ}$
> Enthaply change depends on the state of the reactants and products

Practice Problem!

How much heat has been released when 4.50 g of methane gas is burned in a constant pressure system? Is the reaction endothermic or exothermic?
$\mathrm{CH} 4+2 \mathrm{O} 2 \rightarrow \mathrm{CO} 2+\mathrm{H} 20$
$\Delta \mathrm{H}=-890 \mathrm{~kJ}$
Heat $=(4.50 \mathrm{~g} \mathrm{CH} 4)(1 \mathrm{~mol} \mathrm{CH} 4 / 16.0 \mathrm{~g} \mathrm{CH} 4)(-890 \mathrm{~kJ} / 1 \mathrm{~mol}$ $\mathrm{CH} 4)=-250 \mathrm{~kJ}$

The negative sign in front of our answer tells us that the reaction is exothermic

