Chapter 5: Thermochemistry

Joule (J): a unit for energy → In chemistry, we use kilojoules (kJ) calorie (cal): measurement of energy change accompanying chemical reactions

➤ 1 cal = 4.184 J

System vs Surroundings

- SYSTEM is what we're studying. Usually the chemicals in a chemical reaction
- SURROUNDINGS are everything else. Usually the container in which the reaction is occurring
 Closed system: usually what we study; can exchange energy. but not matter. with
- its surroundings

First Law of Thermodynamics: Energy is conserved

- \blacktriangleright **\Delta E** = E_{final} E_{initial}
 - + $\Delta E \rightarrow E_{\text{final}} > E_{\text{initial}} \rightarrow \text{System gained energy}$
 - $-\Delta E \rightarrow E_{\text{final}} < E_{\text{initial}} \rightarrow \text{System lost energy}$
- (delta) E = q + w
 - o q is heat, w is work

TABLE 5.1 • Sign Conventions for q, w, and ΔE

- For q + means system *gains* heat
- For w + means work done *on* system
- For ΔE + means *net gain* of energy by system
- of energy by system means *net loss* of energy by system

- means system loses heat

- means work done by system

- Endothermic: system absorbs heat; heat flows into the system from the surrounding
- > Exothermic: the system releases heat; heat flows from the system to the surrounding
- > Energy is a state function
 - $\circ~\Delta$ E depends only on the initial and final states of the system, not on how the change occurs

Enthalpy: heat absorbed or released under constant pressure

- Enthalpy is a state function
- > $\Delta H = \Delta H_{\text{final}} \Delta H_{\text{initial}} = q_p$ (heat at constant pressure)
 - + Δ H = endothermic reaction
 - \circ **\Delta** H = exothermic reaction
- Enthalpy of reaction (or heat of reaction)
 - \succ **\Delta** H _{rxn} = H _{products} H _{reactants}
 - > Enthalpy is an *extensive* property: the magnitude of Δ H is directly proportional to the amount of reactant and product consumed in the process
 - > If you reverse the direction of the reaction, Δ H is the same magnitude, but w/ reversed sign
 - Ex: CH4 + 2O2 \rightarrow CO2 + H2O \triangle H = -890 kJ
 - CO2 + 2H2O → 2O2 =CH4**Δ** H = 890 kJ
 - > Enthaply change depends on the state of the reactants and products

Surrounding System

Practice Problem!

How much heat has been released when 4.50 g of methane gas is burned in a constant pressure system? Is the reaction endothermic or exothermic? $CH4 + 2O2 \rightarrow CO2 + H20$ $\Delta H = -890 \text{ kJ}$

Heat = (4.50 g CH4)(1 mol CH4/16.0 g CH4)(-890 kJ/1 mol CH4) = -250 kJ

The negative sign in front of our answer tells us that the reaction is **exothermic**

