Vocabulary:

Atoms- the smallest representative particle of an element.

Subatomic Particles- particles such as protons, neutrons, and electrons that are smaller than an atom

Law of Electrostatic Attraction – unlike charges attract each other, whereas like charges repel eachother

Radioactivity – the spontaneous disintegration of an unstable atomic nucleus with accompanying emission of radiation

Electronic Charge- the negative carried by an electron; it shows has a magnitude of 1.602*10⁻¹⁹

Angstroms- a common non-SI unit of length that is used to measure atomic dimensions

Isotopes- atoms of the same element containing different numbers of neutrons and therefore having different masses

Nuclide- a nucleus of a specific isotope of an element

Chemical formula- a notation that uses chemical symbols with numerical subscripts to convey the relative proportions of atoms of the different elements in a substance

Empirical formula- a chemical formula that shows the kinds of atoms and their relative numbers in a substance

Molecular formula- a chemical formula that indicates the actual of atoms of each element on one molecule of a substance

lons- electrically charged atoms or group of atoms, they can be positively or negatively charged depending on whether electors are lost or gained. (Positively charged ion = **cations**; negatively charged ion = **anion**)

Compounds- a substance composed of two or more elements united chemically in definite proportions

Polyatomic ions- an electrically charged group of two or more atoms

Periodic Table:

Periodic Table: the arrangement of elements in order of increasing atomic number, with elements having similar properties places in vertical columns.

- Elements in each column is known as groups
- Metallic Elements all elements on the left side and in the misled of the periodic table (except for hydrogen)
- Nonmetallic Elements- separated by a diagonal step like line that runs from boron
 (B) to astatine (At)
- Metalloids- elements that properties that fall between metals and nonmetals.

Names of Some of the Groups of the Periodic Table			
Group	Name	Elements	
1A	Alkali Metals	Li,Na,K,Rb,Cs,Fr	
2A	Alkaline earth Metals	Be,Mg,Ca,Sr,Ba,Ra	
6A	Chalcogens	O,S,Se,Te,Po	
7A	Halogens	F,Cl,Br,I,At	
8A	Noble Gases	He,Ne,Ar,Kr,Xe,Rn	

Visual Structure of Molecules: (Images shown respectively)

Structural formula – a formula that shows the number and kinds of atoms in a molecule and the arrangement of the atoms; does not show geometry of molecules.

Perspective Drawing: similar to the structural formula but shows a sense of geometry to the molecule.

Ball-and-Stick Model: shows atoms as spheres and the bonds as sticks.

Space filling model- a depiction of what the molecule would look like if it were scaled up in size.

Naming Inorganic Compounds:

Positive Ions (Cations)

a. Cations formed from metal atoms have the same name as the metal

Ex: Na[†]

sodium ion

b. If a metal can form cations of differing charged, the positive charge is given by a Roman numeral in parentheses following the name of the metal

Ex: Fe⁺²

iron (II) ion

c. Cations formed from a nonmetal atoms have names that end in -ium

Ex: NH4⁺

ammonium ion

Negative Ions (Anions)

a. Monatomic anions have named formed by dropping the ending of the name of the element and adding the ending –ide

Ex: H hydride ion

b. Polyatomic anions containing oxygen have names ending in -ate or -ite

Ex: NO₃

nitriate

NO₂ nitrite

c. Anions derived by adding $extstyle{H}^{\star}$ to an oxyanion are named by adding as a prefix the word hydrogen or dihydrogen, as appropriate

Ionic Compounds

a. Names of ionic compounds are the cation name followed by the anion name

Names and Formulas of Acids

Vocabulary:

Polarizability- the ease with which the electron cloy dos an atom or molecule is distorted by an outside influence, thereby inducing a dipole moment.

Heat of Fusion- the enthalpy change for vaporizing a liquid

Heat of Vaporization- the enthalpy change for vaporizing a liquid

Dynamic Equilibrium- a state of balance in which opposing processes occur at the same rate

Volatile- tending to evaporate readily

Triple Point- the temperature at which solid, liquid and gas phases coexists in equilibrium.

Crystalline Solid- a solid whose internal arrangement of atoms, molecule or ions show a regular repetition in any direction through the solid

Amorphous Solid – a solid whose molecule arrangement lacks a regular, long range pattern

Unit Cell- the smallest portion of a crystal that reproduces the structure of the entire crystal when repeated in different directions in space.

Crystal Lattice- an imaginary network of points on which the repeating unit of the structure of a solid may be imagined to be laid down so that the structure of the crystal is obtained.

Primitive Cubic cell - a cubic unit cell in which the lattice points are at the corners only

Body-Centered Cubic cell – a cubic cell in which the lattice points occur at the corners and at the center

Face-Centered Cubic cell- a cubic unit cell that has lattice points at each corner as well as at the center of each face

Cubic close packing- a close lacking arrangement in which the atoms of the third layer of a solid are not directly over those in the first layer

Hexagonal close packing- a close packing arrangement in which the atoms of the third layer of a solid lie directly over those in the first layer.

Coordination number- the number of adjacent atoms to which as atom is directly bonded.

Molecular solids- solids that are composed of molecules

Covalent-network solids- solids in which the units that make up the three-dimensional network are joined by covalent bonds.

Ionic solids- solids that are composed of ions.

Metallic solid- solids made up of metal atoms.

Characteristic Properties of the States of Matter

Gas- Assumes both the volume and the shape of container, compressible, Diffusion within a gas occurs rapidly, flows readily

Liquid- Assumes the shape of the portion of the container it occupies, does not expand to fill container, is virtually incompressible, flows readily

Solid- Retains its own shape and volume, is virtually incompressible, diffusion within a solid occurs extremely slowly, does not flow

Intermolecular Forces:

Intermolecular Forces: the short range attractive forces operating between the particles that make up the unit of a liquid or soli substance.

Dipole Dipole Forces: the force that exists between polar molecules

London Dispersion Forces- intermolecular forces resulting from attractions between induced dipoles

Hydrogen Bonding – bonding that results from intermolecular attractions between molecules containing hydrogen bonded to an electronegative element.

Ion-Dipole Forces – the force that exists between an ion and its neutral polar molecule that possesses a permanent dipole moment.

Phase Diagrams:

The phase diagram for CO_2 follows the typical behavior. The melting point increases with increasing pressure. In contrast, the melting point of H_2O decreases with increasing pressure. *Water is among the very few substances whose liquid form is more compact than its solid form.

Structures of Solids:

Finding Density

The geometric arrangement of ions in crystals of LiF is the same as that in NaCL. The unit cell of LiF is 4.02 A on an edge. Calculate the density of LiF.

Solution Because the arrangement of ions in LiF is the same as NaCl, as unit cell of LiF will contain four Li^{*} and four F ions. Density is a measurement of mass per unit volume. Thus, we can calculate the density of LiF from the mass contained in a unit cell and the volume of the unit cell. The mass contained in one unit cell is

4(6.94 amu) + 4(19.0 amu) = 103.8amu

The volume of a cube of length a on an edge is a^3 , so the volume of the unit cell is $(4.02 \text{ A})^3$

Density = $(103.8 \text{ amu})/(4.02 \text{ A}) * (1g)/(6.02*10^{23} \text{ amu}) * (1A/10^{-8} \text{cm}) = 2.65 \text{g/cm}^3$

Heating Curve: A heating curve is a graph of temperature of a system versus the amount of heat added.

Structures of Solids

Primitive (simple) Cubic cell – a cubic unit cell in which the lattice points are at the corners only

Body-Centered Cubic cell – a cubic cell in which the lattice points occur at the corners and at the center

Face-Centered Cubic cell- a cubic unit cell that has lattice points at each corner as well as at the center of each face

Figure 9a: Space filling model of fcc.

The face of fcc. Face diagonal = 4