Chapter 17 – Additional Aspects of Aqueous Equilibria 17.1 The Common-Ion Effect

- Common ion is produced by both acid and salt
- Strong electrolyte added to a weak electrolyte with an ion in common
- Imposes a stress on system (salt completely dissociates in water)
- Shifts equilibrium to left (thus less dissociation of weak acid than before)
- Equilibrium is depressed, can assume that the $[]_0$
- Same is true of the conjugate base

 $HA + OH^{-} \rightarrow A^{-} + H_{2}O \qquad A^{-} + H^{+} \rightarrow HA$

Calculate the pH of a solution containing 1.00 M HF (K_a = 7.2 E -4)

$HF_{(aq)} \blacktriangleleft$	\blacktriangleright H ⁺ _(aq) +	- F ⁻ _(aq)		
1.00M	0	0	$7.2 \times 10^{-4} = x^2/1.00 - x$	$7.2 \times 10^{-4} = x^2/1.00$
-X	$+_{\rm X}$	$+_{X}$	$7.2 \times 10^{-4} = x^2$	
1.00-x	Х	$+_{X}$	x = 0.027	

pH = -log(0.027) = 1.57

If 0.100 moles of NaC₂H₃O₂ are added to a 1.00L of 0.100M solution of acetic acid, HC₂H₃O₂, what is the reactant pH? $K_a = 1.8 \times 10^{-5}$

$HC_2H_3O_2$ +	$H_2O(l)$	\bullet H ₃ O ⁺ -	+ $C_2H_3O_2^-$	
0.30M	1	0	0.30M	
-x M	1	+ xM	+ xM	
(0.30 - x)M	2	x M	(0.30+x)M	
$\mathbf{K}_{a} = \mathbf{[H^{+}]} \mathbf{[C_{2}H_{3}O_{2}]}$		$1.8 \ge 10^{-5} = x(0.100 + x)$		$1.8 \ge 10^{-5} = 0.100 \ge 0.100 \ge 0.100 \ge 0.100 \ge 0.000 \ge 0.0000 \ge 0.00000 \ge 0.0000 > 0.00000 > 0.0000 > 0.0000 > 0.00000 > 0.000000 > 0.000$
$[HC_2H_3O_2]$		(0.100-x)		0.100

 $pH = -log (1.8 \times 10^{-5}) = 4.74$

17.2 Buffered Solutions

- Buffered solutions resist a change in pH upon addition of small amounts of acid or base
 - \circ Contain an acidic species to neutralize OH⁻ ions and a basic one to neutralize H⁺ ions
- May be buffered at acidic or basic pH
- Weak acid and conjugate base (salt has high solubility)
- Weak base and conjugate acid (salt has high solubility)
- pH in the buffered solution is determined by the ratio of concentration of weak acid and weak base
- pH is determined by: value of K_a for a weak acid component of buffer and ratio of concentrations of acid to conjugate base pair
- $OH^2 + HA \rightarrow H_20 + A^2$
- As long as concentrations of HA and A⁻ are large compared to the amount of OH⁻ added, the ratio of [HA]/[A⁻] and pH don't change much
- ٠

Buffer Capacity and pH

- Buffer capacity amount of acid or base the buffer can neutralize before the pH begins to change
- Henderson-Hasselbalch equation: $pH = pK_a + \log [base]/[acid]$

What is the pH of a buffer that is 0.12M in lactic acid, $HC_3H_5O_3$, and 0.10M in sodium lactate? $K_a = 1.4 \times 10^{-4}$

 $\begin{array}{l} pH = pK_{a} + log(base/acid) \\ pH = -log(1.4x10^{-4}) + log(0.10/0.12)pH = \underline{3.77} \end{array}$

A buffered solution is created by dissolving 0.30mol of sodium cyanide, NaCN, in 510mL of 0.55M HCN. ($K_a = 6.2 \times 10^{-10}$) Assume that the volume of the solution does not change.

- a. Find the pH of the solution
- b. Find the pH after 0.25mol HNO₃ is added to the solution. Assume the volume does not change.

17.3 Acid-Base Titrations

- Acid is added to a base or vice versa
- Strong acid (known concentration) is added to a base (with an indicator)
- Strong base (known concentration) is added to an acid (with an indicator)
- Indicator changes color to signal the arrival at the endpoint
 - Equivalence point occurs when equal amounts of acid and base have combined

Strong Acid - Strong Base Titrations

30mL of 0.50M HCl is titrated with 0.50M NaOH. Find:

- a) The initial pH of 0.5M HCl
- b) The pH after 15mL of NaOH were added
- a. The initial pH is calculated using the concentration of HCl.
- Strong Acid = 100% dissociation

 $-\log [H^+] = -\log (0.50) = 0.30 = pH$

- b. Find the moles of H^+ and OH^- that reacted
- 0.030L solution x (0.50mol HCl/1L solution) = 0.015mol HCl

 $0.015L \ge (0.50 \text{ mol}/1L \text{ solution}) = 0.0074 \text{ mol NaOH}$

$H^+_{(aq)}$ -	$+ OH_{(aq)}$.	\rightarrow H ₂ 0 _(l)
0.015mol	0.0075mol	~
-0.0075mol	-0.0075mol	~
0.0075mol	0	~

Find [H+] and pH of the new solution New Volume = 0.030L + 0.015L = 0.045L[H+] = 0.0075mol [H+] / 0.045L = 0.17MpH = -log[H+] = -log(0.17) = 0.77

Weak Acid – Strong Base Titrations

30mL of 0.50M HC₂H₃O₂ is titrated with 0.50M NaOH. K_a for acetic acid is 1.8×10^{-5} . Find:

- a) The initial pH of 0.50M acetic acid, $HC_2H_3O_2$.
- b) The pH after 15mL of NaOH was added.
- c) The pH at the equivalence point.

a.
$$HC_2H_3O_2 \leftrightarrow H^+ + C_2H_3O_2^-$$

•		11	· 0211302	
	0.50M	0	0	$[H^+][C_2H_3O_2^-]$ x^2
	-X	+ x	+ x	$\overline{[HC_2H_3O_2]} 0.50$
	0.50 - x	Х	Х	$x^{2} = [H^{+}] = [C_{2}H_{3}O_{2}^{-}] = \sqrt{0.50 (1.8 \times 10^{-5})} = 0.0030M$
				pH = -log (0.0030) = 2.52

b. *Moles of HC*₂*H*₃*O*₂:

0.030L solution x (0.50mol/1L solution) = 0.015mol HC₂H₃O₂ *Moles of NaOH:* 0.015L solution x (0.50mol/1L solution) = 0.0075mol NaOH HC H O + OH O + HO

$\Pi C_2 \Pi_3 O_2 +$		$\sim C_2 \Pi_3 O_2$	Γ $\Pi_2 O$
0.0015mol	0.0075mol	0	~
-0.0075mol	-0.0075mol	+0.0075mol	~
0.0075mol	0	0.0075mol	~

 $\begin{array}{l} Find \ pH \ using \ the \ Henderson - Hasselbalch \ equation \\ pH = pK_a + \log \left([C_2H_3O_2^-] \ / \ [HC_2H_3O_2] \right) \\ pH = -\log \left(1.8 \times 10^{-5} \right) + \log \left(0.17M \ C_2H_3O_2^- \right) \ 0.17M \ HC_2H_3O_2 \right) \\ pH = 4.74 \end{array}$

New Volume = 0.030L + 0.015L = 0.045L $0.0075mol/0.045L = 0.17M HC_2H_3O_2$ $0.0074mol/0.045L = 0.17M C_2H_3O_2^-$

c. The equivalence point is reached when equal numbers of moles of NaOH and $HC_2H_3O_2$ have reacted. $C_2H_3O_2_{(aq)} + H_2O_{(1)} \longrightarrow HC_2H_3O_2_{(aq)} + OH_{(aq)}$

 $(1.0x10^{-14}) / (1.8x10^{-5}) = 5.6x10^{-10}$ $K_w = K_a + K_b$ $K_{b} = K_w / K_a$ Find moles of $C_2H_3O_2^{-1}$ 0.030L solution x (0.50mol C₂H₃O₂⁻/1L solution) = 0.015mol C₂H₃O₂⁻ 0.015 mol C₂H₃O₂⁻ in solution as all acetic acid is reacted New Volume = 0.030L + 0.030L = 0.060L $[C_2H_3O_2] = 0.015 \text{mol}/0.060 \text{L} = 0.25 \text{M} C_2H_3O_2$ Find [OH] and K_b . $K_{\rm b} = (x^2/0.25 - x) = (x^2/0.25)$ $C_2H_3O_2(aq) + H_2O_{(1)} +$ $x = [OH^{-}] = \sqrt{0.25} (5.6 \times 10^{-10})$ 0.25M 0 0 $x = 1.2 \times 10^{-5} M$ \sim +x+x-X 0.25-x \sim х х

Find pOH and pH

$$pOH = -log [OH^{-}] = -log(1.2x10^{-5}M) = 4.92$$

 $pH = 14-4.92 = 9.08$

The solution is basic at the equivalence point (basic anion in solution) <u>Titrations of Polyprotic Acids</u>

- When titrating with polyprotic acids or bases the substance has multiple equivalence points.
- For example, in a titration of Na₂CO₃ with HCl, there are two distinct equivalence points on the titration curve.

17.4 Solubility Equilibria

- K_{sp}= Solubility Product Constant
- Expresses the degree to which the solid is soluble in water
- The equation for K_{sp} is $K_{sp} = [ion]^{a} [ion]^{b}$

17.5 Factors that Affect Solubility

- Presence of common ions
- pH of the solution
- Presence of complexing agents
 - Presence of common ions in a solution will reduce the solubility and shift the equilibrium left

Solubility and pH

- Solubility of slightly-soluble salts containing basic anions increases as the pH of the solution decreases
 - OH ion is insoluble in water while the H+ ion is highly soluble
 - When a basic solution has a low concentration of OH ions the salt will be easy to dissolve
- The more basic the anion, the more the solubility is influenced by the pH of the solution
- Salts with anions of strong acids are unaffected by changes in pH

Formation of Complex Ions

- Metal ions can act as Lewis acids, electron-pair acceptors toward water molecules (which act as Lewis bases), or electron-pair donors
- Lewis bases other than water can interact with metal ions, particularly with transition-metal ions
- Assembly of a metal ion and the Lewis bases bonded to it is called a complex ion
- Equilibrium constant for formation ions is called a formation constant, K_f

Amphoterism

- Amphoteric a metal hydroxide that is capable of being dissolved in strong acids or strong bases, but not in water because it can act like an acid or a base
- Examples: Al^{+3} , Cr^{+3} , Zn^{+2} , and Sn^{+2}
 - \circ These metal ions are more accurately expressed as Al(H₂O)₆^{+3.}
 - This is a weak acid and as it is added to a strong base, it loses protons and eventually forms the neutral and water-soluble $Al(H_2O)_3(OH)_3$

17.6 Precipitation and Separation of Ions

- The reaction quotient, Q, can with the solubility product constant determine if there is a precipitation
 - \circ If Q > Ksp, precipitation occurs until Q = Ksp
 - \circ If Q = Ksp, equilibrium exists (saturated solution)
 - \circ If Q < Ksp, solid dissolves until Q = Ksp
- Q is sometimes referred to as the ion product because there is no denominator

Selective Precipitation of Ions

- Selective Precipitation is the separation of ions in an aqueous solution by using a reagent that forms a precipitate with one or more of the ions.
- The sulfide ion is widely used to separate metal ions because the solubility of the sulfide salts span a wide range and are dependent on the pH of the solution

17.7 Qualitative Analysis for Metallic Elements

- Qualitative Analysis determines the presence or absence of a particular metal ion, whereas quantitative analysis determines how much of a certain substance is present or produced
- 5 main groups of metal ions
 - Insoluble Chlorides, Acid-insoluble sulfides, base-insoluble sulfides and hydroxides, insoluble phosphates, and the alkali metal ions and NH4⁺¹