17.1 The Common-Ion Effect

- Common ion is produced by both acid and salt
- Strong electrolyte added to a weak electrolyte with an ion in common
- Imposes a stress on system (salt completely dissociates in water)
- Shifts equilibrium to left (thus less dissociation of weak acid than before)
- Equilibrium is depressed, can assume that the $[\rightarrow \text { [}]_{0}$
- Same is true of the conjugate base

$$
\begin{array}{cc}
\begin{array}{c}
\text { Add strong base to a } \\
\text { solution of weak acid }
\end{array} & \begin{array}{l}
\text { Add strong acid to a } \\
\text { solution of weak base }
\end{array} \\
\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} & \mathrm{~A}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HA}
\end{array}
$$

Calculate the pH of a solution containing $1.00 \mathrm{M} \mathrm{HF}\left(\mathrm{K}_{\mathrm{a}}=7.2 \mathrm{E}-4\right)$
$\mathrm{HF}_{(\mathrm{aq})} \leftrightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{F}_{(\mathrm{aq})}^{-}$

1.00 M	0	0
-x	+x	+x
$1.00-\mathrm{x}$	x	+x

$7.2 \times 10^{-4}=\mathrm{x}^{2} / 1.00-\mathrm{x} \quad 7.2 \times 10^{-4}=\mathrm{x}^{2} / 1.00$
$7.2 \times 10^{-4}=\mathrm{x}^{2}$
$\mathrm{x}=0.027$
$\mathrm{pH}=-\log (0.027)=\underline{1.57}$
If 0.100 moles of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ are added to a 1.00 L of 0.100 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, what is the reactant pH ? K_{a} $=1.8 \times 10^{-5}$

$$
1.8 \times 10^{-5}=\frac{0.100 \mathrm{x}}{0.100}
$$

$\mathrm{pH}=-\log \left(1.8 \times 10^{-5}\right)=\underline{4.74}$

17.2 Buffered Solutions

- Buffered solutions resist a change in pH upon addition of small amounts of acid or base
- Contain an acidic species to neutralize OH^{-}ions and a basic one to neutralize H^{+}ions
- May be buffered at acidic or basic pH
- Weak acid and conjugate base (salt has high solubility)
- Weak base and conjugate acid (salt has high solubility)
- pH in the buffered solution is determined by the ratio of concentration of weak acid and weak base
- pH is determined by: value of K_{a} for a weak acid component of buffer and ratio of concentrations of acid to conjugate base pair
- $\mathrm{OH}^{-}+\mathrm{HA} \rightarrow \mathrm{H}_{2} 0+\mathrm{A}^{-}$
- As long as concentrations of HA and A^{-}are large compared to the amount of OH^{-}added, the ratio of $[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$ and pH don't change much
-

Buffer Capacity and pH

- Buffer capacity - amount of acid or base the buffer can neutralize before the pH begins to change
- Henderson-Hasselbalch equation: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log$ [base]/[acid]

What is the pH of a buffer that is 0.12 M in lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, and 0.10 M in sodium lactate? $\mathrm{K}_{\mathrm{a}}=1.4 \times 10^{-4}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log ($ base $/$ acid $)$
$\mathrm{pH}=-\log \left(1.4 \times 10^{-4}\right)+\log (0.10 / 0.12) \mathrm{pH}=\underline{3.77}$
A buffered solution is created by dissolving 0.30 mol of sodium cyanide, NaCN , in 510 mL of $0.55 \mathrm{M} \mathrm{HCN} .\left(\mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-}\right.$ ${ }^{10}$) Assume that the volume of the solution does not change.
a. Find the pH of the solution
b. Find the pH after $0.25 \mathrm{~mol}_{\mathrm{HNO}}^{3}$ is added to the solution. Assume the volume does not change.
a. $\mathrm{NaCN}=(0.30 \mathrm{~mol} / 0.510 \mathrm{~L})=0.59 \mathrm{M}$
$\mathrm{pH}=-\log \left(6.2 \times 10^{-10}\right)+\log (0.59 \mathrm{M} / 0.55 \mathrm{M})$
$\mathrm{pH}=\underline{9.24}$
b. $0.55 \mathrm{HCN}=\mathrm{x} / 0.510 \mathrm{~L}=0.28 \mathrm{~mol} \mathrm{HCN}$
$\mathrm{pH}=-\log \left(6.2 \times 10^{-10}\right)+\log [(0.30-0.25) /(0.28+0.25)]$
$\mathrm{pH}=\underline{8.18}$
Addition of Strong Acids or Bases to Buffers (see illustration)

17.3 Acid-Base Titrations

- Acid is added to a base or vice versa
- Strong acid (known concentration) is added to a base (with an indicator)
- Strong base (known concentration) is added to an acid (with an indicator)
- Indicator changes color to signal the arrival at the endpoint
- Equivalence point occurs when equal amounts of acid and base have combined

Strong Acid - Strong Base Titrations

30 mL of 0.50 M HCl is titrated with 0.50 M NaOH . Find:
a) The initial pH of 0.5 M HCl
b) The pH after 15 mL of NaOH were added
a. The initial pH is calculated using the concentration of HCl .

Strong Acid $=100 \%$ dissociation
$-\log \left[\mathrm{H}^{+}\right]=-\log (0.50)=\underline{0.30}=\mathrm{pH}$
b. Find the moles of H^{+}and OH^{-}that reacted
0.030 L solution $\mathrm{x}(0.50 \mathrm{~mol} \mathrm{HCl} / 1 \mathrm{~L}$ solution $)=0.015 \mathrm{~mol} \mathrm{HCl}$
$0.015 \mathrm{~L} \times(0.50 \mathrm{~mol} / 1 \mathrm{~L}$ solution $)=0.0074 \mathrm{~mol} \mathrm{NaOH}$

Find $[\mathrm{H}+]$ and pH of the new solution
New Volume $=0.030 \mathrm{~L}+0.015 \mathrm{~L}=0.045 \mathrm{~L}$
$[\mathrm{H}+]=0.0075 \mathrm{~mol}[\mathrm{H}+] / 0.045 \mathrm{~L}=0.17 \mathrm{M}$
$\mathrm{pH}=-\log [\mathrm{H}+]=-\log (0.17) \quad=\quad \underline{0.77}$

Weak Acid - Strong Base Titrations
30 mL of $0.50 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is titrated with $0.50 \mathrm{M} \mathrm{NaOH} . \mathrm{K}_{\mathrm{a}}$ for acetic acid is 1.8×10^{-5}. Find:
a) The initial pH of 0.50 M acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
b) The pH after 15 mL of NaOH was added.
c) The pH at the equivalence point.
a.

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \longleftrightarrow \mathrm{H}^{+}$	$+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	
0.50 M	0	0
-x	+x	+x
$0.50-\mathrm{x}$	x	x

$\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]} \quad 0 \frac{\mathrm{x}^{2}}{.50}$
$\mathrm{x}^{2}=\left[\mathrm{H}^{+}\right]=\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=\sqrt{ } 0.50\left(1.8 \times 10^{-5}\right)=0.0030 \mathrm{M}$
$\mathrm{pH}=-\log (0.0030)=\underline{2.52}$
b. Moles of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$:
0.030 L solution $\mathrm{x}(0.50 \mathrm{~mol} / 1 \mathrm{~L}$ solution $)=0.015 \mathrm{~mol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

Moles of NaOH :
0.015 L solution $\mathrm{x}(0.50 \mathrm{~mol} / 1 \mathrm{~L}$ solution $)=0.0075 \mathrm{~mol} \mathrm{NaOH}$

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+$	$\mathrm{OH}^{-} \longleftrightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}+$	$\mathrm{H}_{2} \mathrm{O}$	
0.0015 mol	0.0075 mol	0	\sim
-0.0075 mol	-0.0075 mol	+0.0075 mol	\sim
0.0075 mol	0	0.0075 mol	\sim

New Volume $=0.030 \mathrm{~L}+0.015 \mathrm{~L}=0.045 \mathrm{~L}$
$0.0075 \mathrm{~mol} / 0.045 \mathrm{~L}=0.17 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
$0.0074 \mathrm{~mol} / 0.045 \mathrm{~L}=0.17 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$
Find pH using the Henderson - Hasselbalch equation
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right] /\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\right)$
$\mathrm{pH}=-\log \left(1.8 \times 10^{-5}\right)+\log \left(0.17 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} / 0.17 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$
$\mathrm{pH}=\underline{4.74}$
c. The equivalence point is reached when equal numbers of moles of NaOH and $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ have reacted.
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longleftrightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}$
$\mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}}+\mathrm{K}_{\mathrm{b}} \quad \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}} \quad\left(1.0 \times 10^{-14}\right) /\left(1.8 \times 10^{-5}\right)=5.6 \times 10^{-10}$
Find moles of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
0.030 L solution $\mathrm{x}\left(0.50 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} / 1 \mathrm{~L}\right.$ solution $)=0.015 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
$0.015 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$in solution as all acetic acid is reacted
New Volume $=0.030 \mathrm{~L}+0.030 \mathrm{~L}=0.060 \mathrm{~L}$
$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=0.015 \mathrm{~mol} / 0.060 \mathrm{~L}=0.25 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$
Find [OH^{-}] and K_{b}.

0.25 M	\sim	0	0
-x	\sim	+x	+x
0.25-x	\sim	x	x

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\left(\mathrm{x}^{2} / 0.25-\mathrm{x}\right)=\left(\mathrm{x}^{2} / 0.25\right) \\
& \mathrm{x}=\left[\mathrm{OH}^{-}\right]=\sqrt{0} .25\left(5.6 \mathrm{x} 10^{-10}\right) \\
& \mathrm{x}=1.2 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

Find pOH and pH
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(1.2 \times 10^{-5} \mathrm{M}\right)=\underline{4.92}$
$\mathrm{pH}=14-4.92=\underline{9.08}$
The solution is basic at the equivalence point (basic anion in solution)
Titrations of Polyprotic Acids

- When titrating with polyprotic acids or bases the substance has multiple equivalence points.
- For example, in a titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with HCl , there are two distinct equivalence points on the titration curve.

17.4 Solubility Equilibria

- $\mathrm{K}_{\text {sp }}=$ Solubility Product Constant
- Expresses the degree to which the solid is soluble in water
- The equation for $K_{s p}$ is $K_{\text {sp }}=[i o n]^{a}[i o n]^{b}$

17.5 Factors that Affect Solubility

- Presence of common ions
- pH of the solution
- Presence of complexing agents
- Presence of common ions in a solution will reduce the solubility and shift the equilibrium left

Solubility and pH

- Solubility of slightly-soluble salts containing basic anions increases as the pH of the solution decreases
- OH^{-}ion is insoluble in water while the $\mathrm{H}+$ ion is highly soluble
- When a basic solution has a low concentration of OH^{-}ions the salt will be easy to dissolve
- The more basic the anion, the more the solubility is influenced by the pH of the solution
- Salts with anions of strong acids are unaffected by changes in pH

Formation of Complex Ions

- Metal ions can act as Lewis acids, electron-pair acceptors toward water molecules (which act as Lewis bases), or electron-pair donors
- Lewis bases other than water can interact with metal ions, particularly with transition-metal ions
- Assembly of a metal ion and the Lewis bases bonded to it is called a complex ion
- Equilibrium constant for formation ions is called a formation constant, K_{f}

Amphoterism

- Amphoteric - a metal hydroxide that is capable of being dissolved in strong acids or strong bases, but not in water because it can act like an acid or a base
- Examples: $\mathrm{Al}^{+3}, \mathrm{Cr}^{+3}, \mathrm{Zn}^{+2}$, and Sn^{+2}
- These metal ions are more accurately expressed as $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+3 .}$
- This is a weak acid and as it is added to a strong base, it loses protons and eventually forms the neutral and water-soluble $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$

17.6 Precipitation and Separation of Ions

- The reaction quotient, Q , can with the solubility product constant determine if there is a precipitation
- If $\mathrm{Q}>\mathrm{Ksp}$, precipitation occurs until $\mathrm{Q}=\mathrm{K}$ sp
- If $\mathrm{Q}=\mathrm{Ksp}$, equilibrium exists (saturated solution)
- If $\mathrm{Q}<\mathrm{Ksp}$, solid dissolves until $\mathrm{Q}=\mathrm{K}$ sp
- Q is sometimes referred to as the ion product because there is no denominator

Selective Precipitation of Ions

- Selective Precipitation is the separation of ions in an aqueous solution by using a reagent that forms a precipitate with one or more of the ions.
- The sulfide ion is widely used to separate metal ions because the solubility of the sulfide salts span a wide range and are dependent on the pH of the solution

17.7 Qualitative Analysis for Metallic Elements

- Qualitative Analysis determines the presence or absence of a particular metal ion, whereas quantitative analysis determines how much of a certain substance is present or produced
- 5 main groups of metal ions
- Insoluble Chlorides, Acid-insoluble sulfides, base-insoluble sulfides and hydroxides, insoluble phosphates, and the alkali metal ions and NH^{+1}

