Chapter 16 Review: Acid and Base Equilibria

The Concepts of Acids and Bases

Concept	Definition	Equation Example	
Arrhenius	Acids: substances that when dissolved in water, increase concentration of H [†] ions Bases: substances that when dissolved in water, increase concentration of OH [†] ions	$HCI_{(g)} \rightarrow H^{+}_{(aq)} + CI^{-}_{(aq)}$	
Bronsted- Lowry	Acids: substances that can transfer a proton. It must have a hydrogen atom. Base: substances that can accept a proton. It must have a nonbonding pair of electrons.	Acid: $HCI_{(g)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + CI^{(aq)}$ Base: $NH_3_{(aq)} + H_2O_{(l)} \longleftrightarrow NH_4^+_{(aq)} + OH^{(aq)}$	
Lewis Acids and Bases	Acids: electron pair acceptors Bases: electron pair donors	H F H N B F H N B F H F H F H F H F H F H F H F H F H F	

Amphoteric: Substances capable of acting as either a base or an acid Example: H₂O (as shown in Bronsted-Lowry example)

Acid-Base Pairs

- Conjugate Acid-Base Pair: And acid and base that only differ in the absence or presence of a proton
 - **Conjugate Base:** Formed by removal of a proton from the acid.
 - **Conjugate Acid**: Formed by the addition of a proton to a base.

Relative Strengths of Acids and Bases

- The stronger the acid, the weaker its conjugate base
- The stronger the base, the weaker its conjugate acid

The pH Scale

pH= -log[H ⁺]	pH=3	3=-log[H ⁺]	10 ⁻³ =H ⁺
pOH=-log[OH ⁻]	$OH^{-} = 1x10^{-4}$	pOH= -log(1x10 ⁻⁴)	pOH = 4

^{*} Strong Acids: HCl, HBr, HI, HNO₃, HClO₃, HClO₄, H₂SO₄

Types of Acids

- Monoprotic: Only one hydrogen can be liberated (Ex. HCl, HBr, HI)
- Polyprotic: More than one acidic hydrogen can be liberated (Ex. H₂SO₄, H₃PO₄)
- Oxyacids (HaXbOc): Proton attached to oxygen of an ion (Ex. HNO₃, H₃PO₄)
- Organic Acids: Contain carboxyl (-COOH) with H attached to O (Ex. CH₃COOH)

Weak	Partially ionize in	Acid Dissociation Constant (K _a): Equilibrium	The larger the value of K _a ,
Acids	aqueous	constant for the ionization of an acid	the stronger the acid
	solutions		
Weak	a chemical base	Base Dissociation Constant (K _b): Equilibrium	The larger the value of K _b ,
Bases	that does not	where a base reacts with water to form a	the stronger the base
	ionize fully in an	conjugate acid and OH-	
	aqueous solution		

ACID BASE HC1 CI-100% H_2SO_4 HSO₄ ionized in H₂O HNO_3 NO_3 H₃O⁺(aq) H_2O SO_4^2 HSO₄ H_3PO_4 H_0PO_d HF strength increases strength $HC_2H_3O_2$ C2H2O2 H_2CO_3 HCO₃ H_2S HS-Base H₂PO₄ HPO_4 2- NH_3 NH_4^+ HCO₃ CO_3^{2-} HPO_4^2 PO_4 H_2O OH OH- O^{2} 100% H_2 Hprotona in H₂O CH_4 CH_3

*Sig figs of pH: the number of sig figs in the lead number is the number of decimal places for the pH value.

> Ion Product of Water = $K_{w} = [H^{+}][OH^{-}] = 10^{-14}$ Relationship Between Ka and K_b $K_a \times K_b = K_w$ $pK_a+pK_b=pK_w=14.00$

% Dissociation =

amount dissociated x 100 initial concentration

EXAMPLE 1: Calculate pH of 2 M acetic acid (HC₂H₃O₂) with a K_a of 1.8 x 10⁻⁵.

 $HC_2H_3O_2 \leftrightarrow H^+ + C_2H_3O_2-$ 2.0 M 0 0

-X +X +X 2.0-X Χ

5% rule makes it $K_a = X^2 / 2.0 \text{ M}$ $K_a = 1.8 \times 10^{-5}$ $K_a = [X][X] / [2.0-X]$

 $1.8 \times 10^{\Lambda^{-5}} = X^2 / 2.0 \text{ M}$ $\sqrt{2 \times 1.8 \times 10^{-5}} = X$ $H^+ = X = .006 \text{ M}$

pH = -log(.006) = 2.22

Find percent dissociation

% dissociation = (.006 M / 2.0 M) = .3%

```
EXAMPLE 2: Calculate the K<sub>a</sub> of a 0.10 M solution HCHO<sub>2</sub> if the pH at standard temperature is 2.38.
HCHO_2 \longleftrightarrow H^+ + CHO_2^-
K_a = [H^+][CHO_2]/[HCHO_2]
pH = -log[H^{+}] = 2.38
               10^{-2.3} = H^{+}
               H^{+} = 4.2 \times 10^{-3} M
               HCHO<sub>2</sub>
                                         \leftrightarrow
                                                      H+
                                                                              CHO<sub>2</sub>-
                                                                                                                0.10 - 4.2 \times 10^{-3} \approx 0.10
0.10 M
                                                              0
                                 0
                                                                                                                Ka = (4.2 \times 10^{-3})^2 / 0.10 = 1.8 \times 10^{-4}
-4.2 x 10<sup>-3</sup>
                                 +4.2 \times 10^{-3}
                                                              +4.2 x 10<sup>-3</sup>
0.10 - 4.2 \times 10^{-3}
                                 4.2 \times 10^{-3}
                                                              4.2 \times 10^{-3}
Find K<sub>b</sub>
                                                                             K_a \times K_b = K_w
                                                                             (1.0 \times 10^{-14}) / (1.8 \times 10^{-4}) = K_b
                                                                             K_b = 5.56 \times 10^{-11}
```

Polyprotic Acids

• The second K_a (K_{a2}) is much smaller than K_{a1} because it is easier to remove the first proton.

EXAMPLE 3: Solve for the concentration of CO_3^{-2} given that the solubility of CO_2 in pure water at standard conditions is .0037 M, $K_{a1} = 4.3 \times 10^{-7}$, and $K_{a2} = 5.6 \times 10^{-11} (CO_2 + H_2O \leftrightarrow H_2CO_3)$

п2СО3	\leftarrow	п	т	псо₃
0.0037 M	0		0	
-X	+X		+X	
.0037-X	Χ		Χ	

$$K_a = 4.3 \times 10^{-7} = (X)(X)/.0037-X$$

 $X = 4.0 \times 10^{-5}$

$$K_{a2} = 5.6 \times 10^{-7} = (4.0 \times 10^{-5}) \text{ (Y)/ } (4.0 \times 10^{-5})$$

 $CO_3^{-2} = Y = \frac{5.6 \times 10^{-11}}{10^{-11}}$

Strengths of Different Acids

Strengths of Different Acids			
Binary Acids	Acids made up of 2 elements	Acid strength increases as you move down group	
H-O-Y Oxyacids	Acids in which OH groups are bound to a central	Acid strength increases as electronegativity of Y	
	atom and some atom Y	increases	
H-Y-On	Acids in which H is bounded to some atom Y and	Acid strength increases as the number of oxygen atoms	
Oxyacids	multiple O	attached to Y increases	
Carboxylic	Acids that contain a carboxyl group	Acid strength increases as the number of	
Acids		electronegative atoms in the acid increase	