-K_{eq} does not have units.
-Coefficients in balanced equations become exponents.
-Products go on top, Reactants on the bottom.
-PURE SOLIDS AND LIQUIDS ARE NOT INCLUDED

VOCABULARY

Equilibrium- a reversible chemical equation where reactants go to products and vise versa

<u>Law of Mass Action</u>-The relationship of the concentration of such products and reactants is given by the equilibrium expression

Molar Concentration

 K_c

K_c-the constant used for molar concentrations

$\left[C\right]^{c}\left[D\right]^{d}$	aA + bB	\$\$	cC	+	₫Ð
$[A]^a [B]^b$	reactants		pre	əd u	Cf.S

Sample Problem:

Suppose you are given the following equilibrium:

 $CO(g) + H2 O(g) \approx CO2 (g) + H2 (g) \text{ Keq} = 23.2 \text{ at } 600 \text{ K}$ If the initial amounts of CO and H2O were both 0.100 M, what will be the amounts of each reactant and product at equilibrium?

		CO (g)	+ H ₂ O ≠ CO) ₂ (g) + 1	H_2(g)
Because you are only given the	Initial	0.100 M	0.100 M 0		0
initials you assume that you have 0M for each product	Change				
	Equilibrium				
Then some CO and H ₂ O will react meaning they are used up or subtracted as the same number of moles of the products are formed. This unknown value is noted as x		CO (g)	+ H ₂ O ≓	CO ₂ (g) +	+ H ₂ (g)
	Initial	0.100 M	0.100 M	0	0
	Change	- x	-X	x	x
	Equilibrium				
		do ()		ao ()	
Then you subtract and add it all up at the bottom leaving you with unknown concentrations for each substance. Then from here you write the K_{eq} expression.		CU (g)	+ H ₂ O ≓	CU ₂ (g)	+ H ₂ (g)
	Initial	0.100 M	0.100 M	0	0
	Change	- X	-X	x	x
	Equilibrium	u 0.100 -x	0.100 -x	x	X
			2		
$K_{eq} = \frac{[CO_2][H_2]}{[CO][H_2O]} = \frac{(x)(x)}{(0.100 - x)(0.100 - x)} = \frac{x^2}{(0.100 - x)^2} = 23.2$					
From here input both $x^2 / (0.100 - x)^2$ and 23.2 into the "y=" in a graphing calculator and calculate the intersect finding a value of x=0.0829					

But because CO and H2O have a final value of 0.100 - x, you subtract it to get 0.017 M for the reactants and 0.0829M for the products

Pressure

 K_p – The constant for partial pressure -Solved in the same way BUT with Pressures instead of gas.

$$K_P = \frac{P_C P_D}{P_A P_B}$$

$$K_P = K_c (RT)^{\Delta n}$$

-This equation is used to relate K_p with K_c .

R = ideal gas constant .0821(L-atm)/(mol-K)

-T = absolute temperature (K)

- Δn = moles of product- moles of reactant

Le Chatelier's Principle

-States that whenever stress is placed on equilibrium, the equilibrium will shift to relieve the stress $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \quad \Delta H = -92.6$

	Right	Left
Concentration	increase N2 or H2	increase NH3
	decrease NH3	decrease N2 or H2

Volume- If increased, the reaction will shift toward the side with more gas so in this case LEFT for there are 4 moles of gas.

- If there is no gas, there is no effect.

Temperature- Increased, the reaction will proceed to the endothermic reaction($\Delta H = positive$)(Left)

- Decreased, the reaction will proceed to the exothermic direction ($\Delta H = negative$)(Right)

Pressure- Increased, reaction will go toward the side with fewest molecules of gas(Right)

- Decreased, the reaction will go toward the side with more molecules of gas(Left)

Reaction Quotient(Q)

-By comparing K_c with Q_you can determine the shift of the reaction

-K>Q will result in a forward shift

- K<Q will result in a backward shift

0.035 moles of SO₂, 0.500 moles of SO₂Cl₂, and 0.080 moles of Cl₂ are combined in an evacuated 5.00 L flask and heated to 100°C. What is Q before the reaction begins? Which direction will the reaction proceed in order to establish equilibrium?

 $SO_2Cl_2(g) \stackrel{\leftarrow}{\hookrightarrow} SO_2(g) + Cl_2(g) \qquad K_c = 0.078 \text{ at } 100^{\circ}C$ $Q_c = \frac{[SO_2][Cl_2]}{[SO_2Cl_2]}$

 $0.500 \text{ mole } SO_2Cl_2/5.00 \text{ L} = 0.100 \text{ M} SO_2Cl_2$

 $0.035 \text{ mole } SO_2/5.00 \text{ L} = 0.070 \text{ M} SO_2$

 $0.080 \text{ mole } Cl_2/5.00 \text{ L} = 0.016 \text{ M} Cl_2$

$$Q_c = \frac{(0.070)(0.016)}{(0.100)} = 0.011$$

0.078 (K) > 0.011 (Q) Therefore this reaction will shift right