$-\mathrm{K}_{\text {eq }}$ does not have units.
-Coefficients in balanced equations become exponents.
-Products go on top, Reactants on the bottom.
-PURE SOLIDS AND LIQUIDS ARE NOT INCLUDED

VOCABULARY

Equilibrium- a reversible chemical equation where reactants go to products and vise versa
Law of Mass Action-The relationship of the concentration of such products and reactants is given by the equilibrium expression

Molar Concentration

K_{c}-the constant used for molar concentrations

$$
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
$$

$$
\begin{array}{lrl}
a A+b B \Leftrightarrow & c C+d D \\
\text { reacrants } & & \text { products }
\end{array}
$$

Sample Problem:

Suppose you are given the following equilibrium:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H} 2 \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO} 2(\mathrm{~g})+\mathrm{H} 2(\mathrm{~g}) \mathrm{Keq}=23.2 \text { at } 600 \mathrm{~K}
$$

If the initial amounts of CO and H 2 O were both 0.100 M , what will be the amounts of each reactant and product at equilibrium?

From here input both $x^{2} /(0.100-x)^{2}$ and 23.2 into the " $y=$ " in a graphing calculator and calculate the intersect finding a value of $x=0.0829$

But because CO and H 2 O have a final value of $0.100-\mathrm{x}$, you subtract it to get 0.017 M for the reactants and 0.0829 M for the products

Pressure

K_{p} - The constant for partial pressure
-Solved in the same way BUT with
Pressures instead of gas.

$$
K_{P}=\frac{P_{C} P_{D}}{P_{A} P_{B}}
$$

$$
K_{P}=K_{c}(R T)^{\Delta n}
$$

> -This equation is used to relate K_{p} with $\mathrm{K}_{\mathrm{c} .}$ $-\mathrm{R}=$ ideal gas constant $.0821(\mathrm{~L}-\mathrm{atm}) /(\mathrm{mol}-\mathrm{K})$
> $-\mathrm{T}=$ absolute temperature (K)
> $-\Delta \mathrm{n}=$ moles of product- moles of reactant

Le Chatelier's Principle

-States that whenever stress is placed on equilibrium, the equilibrium will shift to relieve the stress

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-92.6
$$

	Right	Left
Concentration	increase N2 or H2	increase NH3
	decrease NH3	decrease N2 or H2

Volume- If increased, the reaction will shift toward the side with more gas so in this case LEFT for there are 4 moles of gas.

- If there is no gas, there is no effect.

Temperature- Increased, the reaction will proceed to the endothermic reaction $(\Delta \mathrm{H}=$ positive $)(\mathrm{Left})$

- Decreased, the reaction will proceed to the exothermic direction $(\Delta \mathrm{H}=$ negative $)$ (Right)

Pressure- Increased, reaction will go toward the side with fewest molecules of gas(Right)

- Decreased, the reaction will go toward the side with more molecules of gas(Left)

Reaction Quotient(\mathbf{Q})

-By comparing K_{c} with Q_you can determine the shift of the reaction
$-K>Q$ will result in a forward shift

- $\mathrm{K}<\mathrm{Q}$ will result in a backward shift
0.035 moles of $\mathrm{SO}_{2}, 0.500$ moles of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$, and 0.080 moles of Cl_{2} are combined in an evacuated 5.00 L flask and heated to $100^{\circ} \mathrm{C}$. What is Q before the reaction begins? Which direction will the reaction proceed in order to establish equilibrium?

$$
\begin{aligned}
& \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \\
& \mathrm{K}_{\mathrm{c}}=0.078 \text { at } 100^{\circ} \mathrm{C} \\
& \mathrm{Q}_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]}
\end{aligned}
$$

0.500 mole $\mathrm{SO}_{2} \mathrm{Cl}_{2} / 5.00 \mathrm{~L}=0.100 \mathrm{M} \mathrm{SO}_{2} \mathrm{Cl}_{2}$
$0.035 \mathrm{~mole} \mathrm{SO}_{2} / 5.00 \mathrm{~L}=0.070 \mathrm{M} \mathrm{SO}_{2}$
0.080 mole $\mathrm{Cl}_{2} / 5.00 \mathrm{~L}=0.016 \mathrm{M} \mathrm{Cl}_{2}$

$$
Q_{c}=\frac{(0.070)(0.016)}{(0.100)}=0.011
$$

$0.078(\mathrm{~K})>0.011(\mathrm{Q})$
Therefore this reaction will shift right

