Section 1:

- Solutions involve one substance dispersing uniformly throughout another
- All of the intermolecular forces we've learned operate in between solute and solvent particles within a solution. When a solute is dissolved in a substance it is known as solvation, when that solvent is water it is known as hydration
- Energy and Disorder are both involved with a solution formation and its spontaneity
- Homogeneous solutions depend on the disorder and entropy to explain why they form

Section 2:

- The dissolving and crystallization of solutes both occur simultaneously within a solution's equilibrium
- A solution at equilibrium with undissolved solutes is saturated
- The amount of solute needed to make a saturated solution in a given amount of solvent is solubility
- Dissolving less solute than needed to saturated is known as unsaturated, and when one dissolves more it is supersaturated

Section 3:

- Solute-Solvent interactions will have higher solubility if the attraction between solute and solvent molecules are stronger
- With this in mind, polar liquids dissolve readily in polar solvents, or like dissolves like
- Liquids that mix at all proportions are miscible; those that do not dissolve significantly are immiscible
- Nonpolar liquids tend to be insoluble in polar liquids (Hexane and water)
- Alcohols can form hydrogen bonds, changing polarity and allowing water solubility

Example: Predict which is more likely to dissolve in nonpolar CCl_{4} or in water: $\mathrm{C}_{7} \mathrm{H}_{16}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{HCl}, \mathrm{I}_{2}$.

$$
\mathrm{CCl}_{4}=\mathrm{C}_{7} \mathrm{H}_{16} \text { and } \mathrm{I}_{2}(\text { nonpolar substances }) \quad \text { Water }=\mathrm{Na}_{2} \mathrm{SO}_{4} \text { and } \mathrm{HCl} \text { (polar and Ionic) }
$$

- Solubility of a gas in any solvent increases as the pressure over the solvent increases
- The solubility of the gas increases in direct proportion to its partial pressure above the solution
- This is Henry's Law: $\mathrm{C}_{\mathrm{g}}=k \mathrm{P}_{\mathrm{g}}$

Where C_{g} is solubility of gas in solution phase (Molarity), P_{g} is partial pressure of gas, and k is Henry's Law Constant (varies)

Example: Calculate concentration of CO_{2} in a bottle with partial pressure of 4.0 atm at $25^{\circ} \mathrm{C}$. Henry's Law constant is 3.1 $\times 10^{-2} \mathrm{~mol} / \mathrm{L}-\mathrm{atm}$
$\left(3.1 \times 10^{-2} \mathrm{~mol} / \mathrm{L}-\mathrm{atm}\right)(4.0 \mathrm{~atm})=0.12 \mathrm{~mol} / \mathrm{L}=0.12 M$

- Solubility of solid solutes increase as the temperature increases, while solubilities of gases typically decreases with increasing temperature

Section 4:

- Mass percentage, mole fraction, Molarity, and molality are all ways of expressing concentration

Mass $\%$ of component $=\frac{\text { Mass of component in soln }}{\text { total mass of soln }} \times 100$

- Concentrations of dilute solutions are measured in parts per million (ppm)

Mole fraction of component $=\frac{\text { moles of component }}{\text { total moles of all components }}$

Molarity $=\frac{\text { moles solute }}{\text { liters soln }}$
Molality $=\frac{\text { moles solute }}{\text { kilograms of solvent }}$

- Molarity is in terms of volume of solution, while Molality is in terms of mass of solvent
- M changes with temperature, m does not
- Sometimes it is possible to interconvert concentration units:

Section 5:

- A physical property of a solution dependent on the concentration of solute particles is a colligative property
- An ideal solution obeys Raoult's Law
$\mathrm{P}_{\mathrm{A}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }_{\mathrm{A}}$
The partial pressure exerted by vapor pressure above a solution, P_{A}, equals the product of the mole fraction of the solvent, X_{A} times the vapor pressure of pure solvent $\mathrm{P}_{\mathrm{A}}^{\circ}$
- A solution with a nonvolatile solute posses a higher boiling point than the pure solvent
- Molal boiling-point-elevation constant, K_{b}, represents the increase in boiling point for a 1 m solution of solute compared to pure solvent; just as the Molal freezing-point-depression constant, K_{f}, measures the lower of a 1 m solution
- $\Delta \boldsymbol{T}_{\boldsymbol{b}}=\boldsymbol{K}_{\boldsymbol{b}} \boldsymbol{m}$ (same for freezing point but with K_{f})

Example: What is the boiling point elevation when 11.4 g of ammonia (NH3) is dissolved in $200 . \mathrm{g}$ of water? Kb for water is $0.52^{\circ} \mathrm{C} / \mathrm{m}$.

Determine molality of ammonia
$\frac{11.4 \mathrm{~g}}{17.031 \mathrm{~g} / \mathrm{mol}}=0.6693676 \mathrm{~mol} \quad \frac{0.6693676 \mathrm{~mol}}{200 \mathrm{~kg}}=3.3468 \mathrm{~m}$
$\Delta \mathrm{T}=(1)\left(0.52{ }^{\circ} \mathrm{C} / \mathrm{m}\right)(3.3468 \mathrm{~m}) \quad \Delta \mathrm{T}=1.74^{\circ} \mathrm{C}$

- Osmosis is the tendency of solvent molecules to move through a semipermeable membrane from a less to more concentrated solution
- Osmotic Pressure, π is
$\pi=\left(\frac{n}{V}\right) R T=M R T$ (Where M is Molarity)

Section 6:

- Large molecular particles that are still small enough to remain suspended in a solvent form colloids, or colloidal dispersions
- Colloids are intermediates between solutions and heterogeneous mixtures

